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Abstract
Agents in the real world must often balance mul-
tiple objectives, such as speed, stability, and en-
ergy efficiency in continuous control. To account
for changing conditions and preferences, an agent
must ideally learn a Pareto frontier of policies rep-
resenting multiple optimal trade-offs. Recent ad-
vances in multi-policy multi-objective reinforce-
ment learning (MORL) enable learning a Pareto
front directly, but require full multi-objective con-
sideration from the start of training. In prac-
tice, multi-objective preferences often arise af-
ter a policy has already been trained on a sin-
gle specialised objective. Existing MORL meth-
ods cannot leverage these pre-trained ‘specialists’
to learn Pareto fronts and avoid incurring the sam-
ple costs of retraining. We introduce Mixed Ad-
vantage Pareto Extraction (MAPEX), an offline
MORL method that constructs a frontier of poli-
cies by reusing pre-trained specialist policies, crit-
ics, and replay buffers. MAPEX combines evalu-
ations from specialist critics into a mixed advan-
tage signal, and weights a behaviour cloning loss
with it to train new policies that balance multiple
objectives. MAPEX’s post hoc Pareto front ex-
traction preserves the simplicity of single-objective
off-policy RL, and avoids retrofitting these algo-
rithms into complex MORL frameworks. We for-
mally describe the MAPEX procedure and evaluate
MAPEX on five multi-objective MuJoCo environ-
ments. Given the same starting policies, MAPEX
produces comparable fronts at 0.001% the sample
cost of established baselines.

1 Introduction
Many real-world continuous control problems require agents
to balance multiple, even conflicting, objectives. In legged
locomotion, for example, a robot must simultaneously opti-
mise forward speed, gait stability, and energy efficiency. In
such settings, there is no single optimal solution, and agents
must instead discover a set of non-dominated policies that
capture the range of feasible trade-offs. Learning this Pareto
front enables downstream stakeholders to select behaviours

that reflect their current preferences or adapt to changing op-
erational conditions.

Typically, multiple objectives are handled through scalar-
isation into a single weighted sum and training via standard
reinforcement learning (RL). While accessible and tractable,
this approach yields only a single, fixed trade-off. Simply re-
peating this procedure for every trade-off is inefficient and
practically infeasible without sophisticated experience and
representation sharing.

Multi-Objective RL (MORL), and specifically multi-policy
MORL algorithms partially address this through various ar-
chitectural improvements to learn the entire frontier directly.
Methods like MORL/D [Felten et al., 2024] divide the prob-
lem into several single-objective problems through scalari-
sation, and use single-objective RL with buffer sharing to
train policies for each scalarisation. Other works like PG-
MORL [Xu et al., 2020] and MOPDERL [Tran et al., 2023]
maintain populations of policies, combining RL with evolu-
tionary principles to jointly improve the policies in the pop-
ulation and cover the objective space. PSL-MORL [Liu et
al., 2025], a notable recent work, trains a hypernetwork to
produce a fresh policy for every desired trade-off.

Despite successfully learning Pareto fronts, these methods
suffer from a critical limitation: requiring full multi-objective
consideration from the outset of training. This rigidity creates
a disconnect with practical scenarios, where multi-objective
preferences often arise retroactively, typically only after a ro-
bust policy for a primary task has already been trained. For
instance, a preference for more stability may only emerge af-
ter observing a locomotion policy highly optimised for speed.
To obtain new trade-offs in these scenarios, practitioners must
1) discard pre-trained policies and incur the sample costs of
re-training, and 2) retrofit their algorithm into complex multi-
objective learning frameworks. Currently, no method reuses
disjoint specialist policies and training data to recover Pareto
fronts efficiently and with minimal added algorithmic com-
plexity.

In this work we present Mixed Advantage Pareto Extrac-
tion (MAPEX)1, a novel method that fully leverages prior-
trained single-objective policies, critics, and replay buffers
to produce Pareto fronts of policies. Our key insight is that
agents learn optimal trade-offs by intelligently blending ex-

1Code: https://github.com/raghavthakar/MAPEX



pert behaviour on each objective. MAPEX implements this
by blending the single-objective evaluation from each spe-
cialist critic into a multi-objective mixed advantage value and
weighting a behaviour cloning loss with it.

MAPEX bypasses the need to retrofit bespoke or standard
off-policy RL into complex multi-objective learning frame-
works. It preserves both, the simplicity, and intricacies of
these algorithms by providing a realistic pathway to learn-
ing multi-objective behaviours from single-objective train-
ing data. If training from scratch, MAPEX allows allocating
the entire sample budget to training high-performing single-
objective specialists, from which high-quality Pareto fronts
can later be extracted at a minimal sample cost.

We provide a detailed view of MAPEX’s Pareto extrac-
tion procedure, and perform Pareto extraction from special-
ists trained using both standard and bespoke off-policy RL.
Across five multi-objective MuJoCo environments, MAPEX
produces fronts comparable to, or better than established
baselines from the literature. When extracting Pareto fronts
from the same starting policies, other methods consume up to
1000×more samples than MAPEX to produce similar fronts.

2 Background
2.1 Actor–Critic Methods and Offline

Reinforcement Learning
Actor–critic methods: These methods perform reinforce-
ment learning using an actor, which defines the policy, and a
critic, which estimates the expected return of the actor’s be-
haviour [Sutton and Barto, 2018]. By relying on learned value
estimates rather than Monte Carlo returns alone, actor–critic
methods enable efficient and stable policy optimisation, and
are commonly used in continuous control. These methods
are often implemented in an off-policy setting, where experi-
ence collected by one or more behaviour policies is stored in
a replay buffer and reused for policy updates [Haarnoja et al.,
2018; Fujimoto et al., 2018].

Policy improvement is commonly guided by the advantage
function,

Aπ(s, a) = Qπ(s, a)− V π(s), (1)

where Qπ(s, a) is the critic’s action-value function, and
V π(s) = Ea∼π(·|s)[Q

π(s, a)]. In practice, particularly in de-
terministic actor–critic methods, the value function is often
approximated by Qπ(s, π(s)), yielding

Aπ(s, a) ≈ Qπ(s, a)−Qπ(s, π(s)). (2)

Offline Reinforcement Learning: Offline reinforcement
learning studies the problem of learning a policy from a
fixed dataset of transitions, without any further interaction
with the environment during training. A key challenge
in this setting is distributional shift: the dataset may con-
tain diverse experiences that are hard to generalise to, lead-
ing to unreliable value estimates [Panaganti et al., 2025;
Levine et al., 2020].

Advantage-weighted regression (AWR) [Peng et al., 2019]
provides a simple and stable mechanism for policy improve-
ment in this setting by casting reinforcement learning as a

weighted supervised learning problem. Given a critic-derived
advantage estimate A(s, a), the AWR policy update solves

π+ = argmax
π

E(s,a)∼D

[
log π(a|s) exp

(
1
βA(s, a)

)]
,

(3)
where β > 0 is a temperature parameter. This objective em-
phasises actions that are predicted to improve performance
while sampled purely from the observed data, making it
well suited to off-policy and offline reinforcement learning
problems. We use an AWR-inspired regression weighting
in MAPEX to learn multi-objective behaviours from static
single-objective replay buffers.

2.2 Multi-Objective Sequential Decision-Making
Multi-objective sequential decision-making problems are
commonly modelled as Multi-Objective Markov Decision
Processes (MOMDPs). A MOMDP is defined by the tuple
⟨S,A, T , γ,R⟩, containing the state space S, the action space
A, the transition dynamics T : S × A × S → [0, 1], and a
scalar discount factor γ ∈ [0, 1). Unlike standard MDPs, the
reward function R : S × A × S → Rk returns a vector of k
rewards, each corresponding to a distinct objective.

A policy π : S → A induces an expected return for
each objective. We characterise policy performance directly
through its expected long-term returns. Let J(π) ∈ Rk de-
note the vector of objective returns achieved by policy π, with
components

Ji(π) = E

[ ∞∑
t=0

γtri(st, at)

∣∣∣∣∣ s0 ∼ ρ0, at ∼ π(st)

]
, i ∈ {1, . . . , k},

(4)
where ri is the reward function associated with the i-th ob-
jective and ρ0 is the initial state distribution.

From a multi-objective optimisation perspective, learning
in a MOMDP can be viewed as maximising a vector-valued
objective

max
π

F(π) ≜ max
π

[J1(π), J2(π), . . . , Jk(π)]. (5)

Pareto Dominance and Optimality As objectives are of-
ten conflicting, it is generally impossible for a single policy
to optimise all objectives simultaneously. Thus, optimality
in multi-objective settings is defined in terms of Pareto dom-
inance. Given two objective return vectors v,u ∈ Rk, v
Pareto-dominates u (denoted v ≻p u) if v is at least as good
as u in all objectives and strictly better in at least one:

v ≻p u ⇐⇒ (∀i : vi ≥ ui) ∧ (∃j : vj > uj). (6)
If neither vector Pareto-dominates the other, they are said to
be non-dominated.

A policy π is Pareto optimal if its return vector J(π) is
not Pareto-dominated by that of any other policy. The set
of all Pareto-optimal policies induces the Pareto front, which
characterises the optimal trade-offs achievable in the objec-
tive space.

3 Related Works
Recent surveys [Hayes et al., 2022; Roijers et al., 2013] cate-
gorise the expanding MORL landscape into single-policy and
multi-policy approaches. We adopt this taxonomy herein.



Single-policy methods optimise a fixed scalar utility func-
tion [Hayes et al., 2022], using standard RL with linear utili-
ties, and dedicated approaches for non-linear utilities [Lin et
al., 2024b; Van Moffaert et al., 2013; Reymond et al., 2023].
Conversely, multi-policy approaches approximate the Pareto
front, a better-suited approach for unknown or dynamic pref-
erences. Early works like Pareto Q-Learning [Moffaert and
Nowé, 2014] tracked non-dominated return vectors for each
state-action pair, while recent extensions employ preference-
conditioned deep networks [Abels et al., 2018] or convex
envelope updates [Yang et al., 2019] for high-dimensional
spaces.

In continuous control, decomposition-based methods di-
vide the problem into several scalarised objectives. Prior
work [Chen et al., 2020] has augmented naively solving each
scalar objective with an evolutionary strategy [Salimans et
al., 2017] for post-processing. Notably, MORL/D [Felten
et al., 2024] improves efficiency via cooperative buffer shar-
ing and intelligent weight sampling. Another branch of work
combines RL with evolutionary operators: PG-MORL [Xu et
al., 2020] iteratively pushes a population of policies toward
promising objective space regions, while MOPDERL [Tran
et al., 2023] distills a frontier from subpopulations trained
via evolutionary RL [Bodnar et al., 2020; Khadka and Tumer,
2018]. Alternatively, parameter-efficient methods consolidate
policies using meta-learning [Chen et al., 2019], universal
preference-conditioned networks [Basaklar et al., 2023], or
hypernetworks [Liu et al., 2025].

Despite architectural differences, these methods share a
structural limitation: they are designed solely for “from
scratch” learning. If training on one or more individual ob-
jectives has already been performed, these methods cannot
leverage it, effectively requiring pre-trained policies to be dis-
carded and training to be restarted.

A separate line of inquiry focuses on offline MORL, train-
ing preference-conditioned agents from massive datasets.
Approaches like PEDA [Zhu et al., 2023], DiffMORL [Xiao
et al., 2025], and PR-MORL [Lin et al., 2024a] utilise trans-
formers, diffusion, and regularisation to generalise across
preferences. While seemingly similar, MAPEX tackles the
distinct problem of extracting frontiers from pre-trained spe-
cialists rather than large-scale generalisation. Consequently,
MAPEX operates with replay buffers two orders of mag-
nitude smaller than the D4MORL benchmarks [Zhu et al.,
2023] used in offline RL works (e.g., 1 million vs. 150 mil-
lion transitions).

Finally, PCN [Reymond et al., 2022] also uses supervised
learning from an off-policy dataset, but relies on iterative on-
line data collection to populate the objective space. In con-
trast, MAPEX addresses the strictly offline extraction of fron-
tiers from fixed, disjoint datasets. PCN is also currently lim-
ited to discrete action spaces.

4 Method
We now introduce Mixed Advantage Pareto Extraction
(MAPEX), an offline algorithm to extract a Pareto front of
continuous control policies from a set of disjoint single-
objective specialists. The core intent of MAPEX is to fully

leverage the latent information in prior-trained specialists—
which includes their policies, along with their value functions
(critics) and replay buffers—to produce new policies that ex-
press new trade-off behaviours without requiring additional
training interaction with the environment.

Algorithm 1 Mixed Advantage Pareto Extraction (MAPEX)
INPUT: Policy set Π, critic set Q, buffer set D, number of

objectives N
OUTPUT: Pareto front P of policies

1 FUNCTION MAPEX(Π,Q,D, N ):
2 while Required do
3 EVALUATE(Π)

4 P ← FINDPARETOFRONT(Π)

5 {π1, . . . , πN} ← SELECTPARENTS(P)
6 v← CENTROID(π1, . . . , πN ) // In objective space

7 wtarget ← v
∥v∥2

// Target weight vector

8 Dhybrid ←
⋃N

k=1 SAMPLE(Dk,∝ wk)

9 πnew ← INITPOLICY(∅)
10 for ϵ← 1 to E do
11 (s, a) ∼ Dhybrid

12 A←
[(
Qi(s, a)−Qi

(
s, πnew(s)

))]N
i=1

13 Amixed ← w⊤
targetA // Mixed advantage

14 ω(s, a) = min
(
exp

(
Amixed(s,a)

β

)
, ωmax

)
15 LMAPEX ← E

[
ω(s, a) · ∥a− πnew(s)∥22

]
16 UPDATE(πnew,LMAPEX)

17 Π← Π ∪ {πnew}

18 P ← FINDPARETOFRONT(Π)

19 return P

MAPEX achieves this via a Pareto front extraction proce-
dure which iteratively fills gaps in the Pareto front estimate.
First, MAPEX analyses the available policies in the objec-
tive space to identify sparse regions in the Pareto front esti-
mate. Once a gap is identified, MAPEX derives a vector of
‘target weights’ that encodes a weighting over the objectives
that would optimally fill this gap. To train a policy for this
new trade-off, MAPEX constructs a static hybrid buffer by
sampling from the specialists’ buffers in proportion to these
target weights. Crucially, the algorithm then calculates a
mixed advantage for every transition in this dataset by query-
ing each specialist critic, and mixing the individual advan-
tage estimates in the ratio of the target weights. This mixed
advantage captures the value of a transition in demonstrating
target trade-off behaviour. Finally, a fresh policy is trained
using a mechanism inspired by Advantage Weighted Regres-
sion (AWR) [Peng et al., 2019], wherein we regress the pol-



icy onto actions from the hybrid buffer, weighted by an ex-
ponential of their calculated mixed advantage. Algorithm 1
provides a more rigorous look at this procedure.

Starting Information and Notation
We assume that from prior training we have a Policy set Π
with at least N policies for an N -objective problem, a Critic
set Q with N critics, each specialising on evaluating on one
of the problem’s objectives, and a replay buffer set D with N
buffers, each containing experiences from training on a single
objective.

4.1 Step 1: Gap Identification and Parent
Selection

At the start of each iteration, we evaluate the current policy
set Π to obtain the performance vector J(π) ∈ RN of each
policy. We then identify the non-dominated set (the current
Pareto front approximation). We then search for the largest
N -dimensional ‘gap’ on the frontier—a sparse region in the
objective space. For N = 2, we define this as the edge with
the maximal Euclidean span. In practice, to avoid repeatedly
focusing on the same gap, we select the gap using roulette-
wheel sampling based on edge length. The N policies corre-
sponding to the vertices of this gap are selected as the parent
policies, denoted by {πp1

, . . . , πpN
}.

To guide the offspring into this sparse region, we compute
the centroid of the parents’ performance vectors in the objec-
tive space:

Jmid =
1

N

N∑
i=1

J(πpi
) (7)

We then derive a unit vector wtarget of target weights pointing
towards this centroid. This vector encodes the linear prefer-
ence required to interpolate the gap and guides the subsequent
hybrid buffer creation and advantage mixing steps.

4.2 Step 2: Hybrid Buffer Creation and
Advantage Mixing

After deriving the target weight vector wtarget, we assemble
a training distribution that reflects this desired trade-off. We
construct a fixed-size hybrid buffer,Dhybrid, by sampling tran-
sitions from each specialist’s bufferDk in direct proportion to
the corresponding weight wtarget,k. This creates a dataset that
is structurally biased to each objective in the desired propor-
tion.

We then initialise a random policy network πnew that
will be optimised to achieve the target trade-off behaviour.
For this optimisation, we iteratively sample transitions from
Dhybrid to compute the mixed advantage training signal. For
each transition (s, a), we compute a vector of advantages
A(s, a) ∈ RN . The kth element of this advantage vector is
the advantage on the kth objective associated with that tran-
sition, and is computed using the kth specialist critic Qk:

Ak(s, a) = Qk(s, a)−Qk(s, πnew(s)) (8)

This formulation leverages the specific value estimation ex-
pertise of each critic for their respective objective.

Finally, we scalarise these vector-valued advantages into a
single training signal. We compute the mixed advantage as

the dot product of the advantage vector and the target weights
derived in Step 1:

Amixed(s, a) = w⊤
target ·A(s, a) (9)

This scalar value Amixed represents the quality of the
state-action (s, a) specifically regarding the desired trade-off
wtarget.

4.3 Step 3: Mixed Advantage Weighted Regression
To train the offspring policy πnew, we employ a supervised
regression objective weighted by the scalarised signal derived
in Equation 9. Our goal is to selectively clone actions that
contribute positively to the specific target trade-off wtarget.

For a transition (s, a) we compute a regression weight
ω(s, a) by applying a temperature-scaled exponential to its
mixed advantage:

ω(s, a) = min
(
exp

(
Amixed(s, a)

β

)
, ωmax

)
(10)

where β > 0 is a temperature hyperparameter and ωmax is a
clipping threshold to ensure numerical stability.

The fresh policy πnew is then optimised to minimise the
weighted mean squared error between its predicted action and
the retrieved buffer action a:

LMAPEX = E(s,a)

[
ω(s, a) · ∥πnew(s)− a∥22

]
(11)

Once the policy has been updated for the desired epochs, it
is reinserted into the population Π and the MAPEX procedure
is executed for another iteration.

4.4 Mitigating Out-of-Distribution Error
While MAPEX’s mixed advantage values are intuitive to
compute, they expose two main sources of out-of-distribution
(OOD) error: 1) when a transition sampled by one objective’s
specialist policy is evaluated by another objective’s specialist
critics, and 2) when a randomly-initialised policy’s action is
evaluated by specialist critics. We mitigate these issues using
the following design choices.

Secondary Critics
When training each specialist policy πk, we learn not only its
primary critic for objective k, but also a set of secondary crit-
ics for the remaining objectives. All critics associated with
specialist k are trained on the same replay buffer Dk gener-
ated by πk, so that every objective can be evaluated on data
that is in-distribution for the corresponding critic.

Notation: Let m ∈ {1, . . . , N} index objectives and k ∈
{1, . . . , N} index specialists. We denote by Q

(k)
m (s, a) the

action-value critic that predicts the return for objective m us-
ing transitions sampled from Dk (i.e., collected under πk).
Under this notation, the specialist’s primary critic is Q

(k)
k ,

while the secondary critics are {Q(k)
m }m̸=k.

Procedure: During specialist training, only the primary
critic Q(k)

k is used to update the policy πk. The secondary crit-
ics {Q(k)

m }m̸=k are trained in parallel on the same buffer Dk,



but they do not contribute gradients to the policy update. Af-
ter training all specialists, we collect the resulting critics into
a single familyQ ≜ {Q(k)

m }k=1...N, m=1...N . This construc-
tion ensures that when MAPEX samples a transition (s, a)
that originates from a particular specialist bufferDk, the eval-
uations {Q(k)

m (s, a)}Nm=1 are produced by critics trained on
the same state–action distribution as the sampled data.

Practical note: Secondary critics may be trained alongside
primary critics with no change to the policy update rule. If
single-objective specialists have already been trained, a sec-
ondary critic {Q(k)

m }m̸=k can be trained offline using transi-
tions from Dk and the corresponding objective rewards. Ei-
ther way, a distribution-matched critic familyQ can be learnt
for a low cost. We include a comparison of joint-vs. post-hoc-
trained secondary critics in Section 5.

Offspring Policy Warm-Up
In step 2 of the MAPEX procedure (Equation 8), computing
the mixed advantage requires querying specialist critics with
actions proposed by πnew(s). If πnew is initialised arbitrarily,
these actions can be far from the support of the hybrid buffer
and cause OOD error. To reduce this effect, we warm up πnew
by regressing it to the mean of its parents in the action space.

Let {πp1
, . . . , πpN

} denote the parent policies. The mean
parent action at state s is ā(s) ≜ 1

N

∑N
j=1 πpj (s), which we

use to perform a brief behavioural regression step that min-
imises

Linit(θ) ≜ Es∼Dhybrid

[
∥πnew(s)− ā(s)∥22

]
, (12)

We run this regression for a small number of gradient steps
prior to computing the advantage vector in Equation 8. This
warm up keeps πnew’s predicted actions close to those pro-
duced by the parents on states drawn from Dhybrid, more
closely matching each critic’s training exposure, and improv-
ing the reliability of subsequent critic-based updates.

5 Experiments
We evaluate MAPEX on three criteria: sample efficiency
of Pareto extraction; flexibility regarding choice of special-
ist training algorithm and nature of secondary critic train-
ing (joint vs. post-hoc); and general competitiveness against
baselines when training from scratch.

We assume access to secondary critics trained alongside
primary critics during specialist training, but also test a post
hoc variant (MAPEX-PostHoc) where critics are trained of-
fline on static buffers. Unless stated otherwise, specialists are
trained using Proximal Distilled Evolutionary RL (PDERL)
[Bodnar et al., 2020].

5.1 Baselines and Domains
We compare MAPEX against two established MORL meth-
ods:

• MOPDERL [Tran et al., 2023]: An evolutionary actor-
critic method that first trains on each individual objective
using PDERL, and later crosses over solutions across
objectives using a multi-objective distilled crossover. It

serves as a baseline for both ‘from scratch’ training and
pure Pareto extraction (via its distillation phase).

• MORL/D [Felten et al., 2024]: A decomposition-based
approach that uses Soft Actor–Critic [Haarnoja et al.,
2018] on each scalar objective. It uses buffer data shar-
ing and adapts the scalar weights using Pareto Simulated
Annealing [Czyzżak and Jaszkiewicz, 1998].

We use the morl-baselines [Felten et al., 2023] imple-
mentation of MORL/D and the authors’ original implemen-
tation of MOPDERL 2 with default hyperparameters. Exper-
iments are conducted on five bi-objective continuous control
MuJoCo environments from MO-Gymnasium [Felten et al.,
2023], with episodes capped at 750 frames. The nature of
objectives in each environment are specified in Appendix A
table 2.

5.2 Experimental Setup
Sample efficiency: We compare the extraction phase of
MAPEX against the distillation phase of MOPDERL starting
from identical specialist subpopulations trained with PDERL.
Flexibility: We compare standard MAPEX against MAPEX-
PostHoc and MAPEX-TD3 (specialists trained via TD3) to
assess robustness to starting policies and nature of critic train-
ing. Competitiveness: We compare the final Pareto fronts of
the full MAPEX pipeline against MOPDERL and MORL/D
given a fixed sample budget. During specialist training of
all MAPEX variants, we use a replay buffer of size 1M. In
each test we perform five seeded runs with each method. Ex-
act algorithm-specific and experiment parameters are listed in
Appendix B.

6 Results
6.1 Sample Efficiency of Extraction
MAPEX achieves a massive reduction in sample cost com-
pared to baselines. As shown in Figure 2 (MO-Ant-v5),
MAPEX and MAPEX-PostHoc extract a high-performing
front almost immediately, while MOPDERL requires an
additional 300, 000 environment interactions to attain the
same performance. Figure 3 confirms this trend across
MO-Hopper-v5 and MO-Walker2d-v5. Particularly in MO-
Hopper-v5, MAPEX requires 100 samples to reach hypervol-
ume thresholds that MOPDERL requires ≈ 105 samples to
attain—a reduction of three orders of magnitude. This effi-
ciency is driven by MAPEX exploiting the latent represen-
tations of multi-objective behaviour in policies and replay
buffers. It empirically validates our intuition that following
expert behaviour to varying degrees on each objective yields
trade-offs in the objective space. It also validates our main
hypothesis that these behaviours can be learnt by regressing
onto target actions, weighed by their mixed advantage value.

6.2 Flexibility and Robustness
MAPEX is robust to the source of specialist policies. Figure 1
shows that Pareto extraction for standard MAPEX, MAPEX-
PostHoc, and MAPEX-TD3 are largely indistinguishable on

2Modified for v5 MO-Gymnasium MuJoCo domains. Code:
https://github.com/raghavthakar/MOPDERL-MO-Gymnasium



Table 1: Performance metrics (Hypervolume and Sparsity) across v5 MO-Gymnasium MuJoCo environments. Results are Mean ± SEM.
Hypervolume is the space between the Pareto front and a dominated reference point [Guerreiro et al., 2021] and sparsity is the average
euclidean distance between neighbouring points.

Hypervolume (↑) Sparsity (↓)

Environment MAPX MOPDERL MORL/D MAPEX MOPDERL MORL/D

Ant-2obj 1.19e7± 1.2e6 1.46e7± 8.2e5 1.41e7± 1.9e4 315.5± 36.1 201.4± 13.8 289.8± 8.3
Hopper-2obj 3.34e6± 2.9e5 3.17e6± 2.8e5 4.31e6± 1.7e5 209.6± 39.8 64.2± 10.3 115.5± 17.7
Swimmer 1.78e5± 1.6e4 2.41e5± 2.9e4 9.29e4± 5.9e2 49.5± 9.2 30.0± 3.2 2.9± 0.3
Walker2d 3.09e6± 2.2e5 3.47e6± 3.5e5 6.52e6± 4.2e5 157.5± 7.9 103.2± 16.0 96.9± 11.2
HalfCheetah 1.10e7± 5.3e5 1.55e7± 6.8e5 1.88e7± 5.4e4 337.5± 26.7 101.7± 5.9 136.4± 19.6
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Figure 1: Robustness of MAPEX to specialist type and critic
training. Mean hypervolume (± SEM) over generations on MO-
Walker2d-v5 and MO-Ant-v5. The similar performance of stan-
dard MAPEX, MAPEX-PostHoc (offline critics), and MAPEX-TD3
(off-policy specialists) demonstrates the method’s flexibility in ef-
fectively extracting fronts from decoupled pre-trained sources.

MO-Walker2d-v5 and MO-Ant-v5. Crucially, the success
of MAPEX-PostHoc confirms that secondary critics can be
effectively trained retroactively on static buffers, enabling
Pareto extraction from fully decoupled single-objective train-
ing. If simplicity is key, then the performance of MAPEX-
TD3 shows the potential of elegantly adapting off-policy RL
to learn multi-objective behaviours via MAPEX.

While a population of policies (like that produced by
PDERL) provides a rich starting point for Pareto extraction,
MAPEX-TD3 remains competitive with only one specialist
policy per objective (as produced by simple TD3). This is be-
cause MAPEX does not simply distil or interpolate between
parent policies. Instead, MAPEX draws expertise from the
pre-trained replay buffers, which contain a rich and varied set
of state-action examples. These experiences span regions of
the objective space that an individual policy may only cover

sparsely, allowing MAPEX to produce distinct policies for
distinct trade-offs. This is also why MAPEX is robust to the
exact algorithm used to train specialist policies.

6.3 General Competitiveness
Despite being an offline extraction method, MAPEX pro-
duces fronts competitive with MOPDERL and MORL/D,
which require full multi-objective consideration from the be-
ginning. Table 1 shows that MAPEX achieves comparable
hypervolumes (e.g., 3.34× 106 vs. MOPDERL’s 3.17× 106

in MO-Hopper-v5, and 1.78×105 vs. MORL/D’s 9.29×104

in MO-Swimmer-v5) across five multi-objective MuJoCo en-
vironments. While MAPEX fronts are numerically sparser,
by inspecting the fronts in Figure 4 visually, it is clear that
MAPEX produces even and well-spread Pareto fronts.

7 Conclusion
We presented MAPEX, a novel approach to extracting Pareto
fronts of policies from prior single-objective training for con-
tinuous control. We provided a detailed view of MAPEX’s
Pareto extraction procedure, and mentioned some practial
tips. We tested MAPEX with well-established, dedicated
MORL baselines like MOPDERL and MORL/D to empiri-
cally validate its mixed advantage approach. Pareto fronts
are learnt cheaply with MAPEX when specialists are already
trained. If training from scratch, MAPEX integrates easily
with off-policy RL methods and still produces fronts that
compare well to baselines. Finally, we discuss some limi-
tations and future work.

While MAPEX is highly sample efficient, it makes as-
sumptions inherent to our offline extraction setting. First,
MAPEX is strictly bounded by the support of the specialist
buffers; it cannot discover novel behaviours or skills that are
absent from the specialists’ training history. Second, MAPEX
relies on the assumption that valid trade-off policies lie on a
continuous manifold between specialists. In scenarios where
specialists exhibit markedly disjoint behaviours (e.g., a hu-
manoid walking on two legs vs. crawling), interpolation
may yield low-performance policies. Our empirical evalua-
tion focused on bi-objective domains; scaling MAPEX’s gap-
identification heuristic to more objectives (N ≥ 3) remains
a subject for future investigation. Finally, we would like to
leverage MAPEX with a multiagent reinforcement learning
algorithm to extend multi-objective decision-making to the
multiagent setting.
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A Environment Details
Table 2 specifies each objective across five multi-objective
MuJoCo environments. Episodes in each environment are
capped at 750 environment steps.

Table 2: The v5 MO-Gymnasium MuJoCo environments. Objec-
tives include velocity, energy efficiency, jump height, and stability
and must all be maximised. The action dimensions are da, and do
the observation (state) dimensions.

Env. da do Objective 1 Objective 2

Ant-2obj 8 105 x-vel y-vel
Hopper-2obj 3 11 x-vel & survival Jump (w/ cost)
Swimmer 2 8 x-vel Energy eff.
Walker2d 6 17 x-vel Energy eff.
HalfCheetah 6 17 x-vel Energy eff.

B Experimental Hyperparameters
We report the hyperparameters used in our experiments. Ta-
ble 3 lists the settings for the base TD3 algorithm and the
PDERL algorithm which uses TD3, which are shared across
all environments. Table 4 details the general parameters for
MAPEX, and Table 5 lists the environment-specific values
for policy warm up and Pareto extraction. Finally Table 6
lists the number of frames each algorithm was run for, and
the division of frames for MOPDERL, which contains dis-
tinct warm up and Pareto distillation phases.

Table 3: PDERL and TD3 hyperparameters (Shared across environ-
ments).

Parameter Value

PDERL
Population Size 10
Mini Buffer Size 50,000

TD3 / General
Start Timesteps 25, 000
Discount Factor (γ) 0.99
Target Smoothing (τ ) 0.005
Hidden Dimension 256
Actor Learning Rate 3× 10−4

Critic Learning Rate 3× 10−4

Batch Size 256
Buffer Size 1× 106

Exploration Noise 0.1
Policy Noise 0.2
Noise Clip 0.5
Policy Frequency 2

Table 4: MAPEX hyperparameters shared across environments.

Hyperparameter Value
Total iterations 1,200
Child buffer size 200,000
Warm-up steps / epoch 1,000
Warm-up learning rate 3× 10−4

Warm-up batch size 256
Evaluation episodes / actor 5



Table 5: Environment-specific MAPEX hyperparameters across five v5 MO-Gymnasium MuJoCo environments.

Parameter Environment
Ant-2obj Hopper-2obj Swimmer Walker2d HalfCheetah

MAPEX epochs 20 10 10 20 20
AWR β 0.5 0.1 1.0 0.5 1.0
AWR clip (ωmax) 1.0 20.0 20.0 20.0 1.0

Table 6: Environment interaction budgets (frames) per method and environment. For bi-objective tasks (N=2), the “/ obj.” column reports
frames per objective-specific training process (PDERL for MOPDERL; PDERL / TD3 for MAPEX). MAPEX extraction uses 0 additional
environment interaction.

Environment MOPDERL MAPEX (specialists) MORL/D Total
Warm up Warm up / obj. Stage 2 Total Specialist / obj. Total

MO-Ant-2obj-v5 2.0M 1.0M 2.0M 4.0M 2.0M 4.0M 4.0M
MO-Hopper-2obj-v5 2.25M 1.125M 1.75M 4.0M 2.0M 4.0M 4.0M
MO-Swimmer-v5 1.0M 0.5M 1.0M 2.0M 1.0M 2.0M 2.0M
MO-Walker2d-v5 2.0M 1.0M 2.0M 4.0M 2.0M 4.0M 4.0M
MO-HalfCheetah-v5 2.0M 1.0M 2.0M 4.0M 2.0M 4.0M 4.0M
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